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ON VARIOUS TEICHMÜLLER SPACES OF A SURFACE
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(Communicated by Alexander N. Dranishnikov)

Abstract. We investigate various Teichmüller spaces associated to a surface
of infinite topological type. We show that the length spectrum metric is
complete. We give results and examples that compare the length spectrum
Teichmüller space with the quasiconformal and the Fenchel-Nielsen Teichmüller
spaces.

1. Introduction

In this paper, we investigate various Teichmüller spaces associated to a surface
of infinite topological type, continuing works that were done in [10] and [2]. An
initial impulse to these works was given in a paper by H. Shiga [14].

Let S be an orientable connected surface of infinite topological type. More
precisely, we assume that S is obtained by gluing along their boundary components
a countably infinite number of generalized pairs of pants. Here, a generalized pair
of pants is a sphere with three holes, a hole being either a point removed (leaving
a puncture of the pair of pants) or an open disk removed (leaving a boundary
component of the pair of pants).

We study Teichmüller spaces of S. We recall that unlike the case of surfaces of
finite type, there are several Teichmüller spaces associated to the surface S, each of
which depends heavily set-theoretically on the choice of a basepoint for that space.
Furthermore, even if we fix a basepoint, the Teichmüller space depends (again,
set-theoretically) on a distance function that we put on that space. There are
various distances that one can use here. For instance, one can measure distances
between (equivalence classes of) hyperbolic structures by taking suprema of ratios
of geodesic lengths of simple closed curves with respect to these two structures,
or by taking best quasiconformal homeomorphism constants between them, or by
taking best bi-Lipschitz homeomorphism constants, or the sup norm associated to
Fenchel-Nielsen coordinates, and so on. We refer to the papers [10] and [2] for a
discussion of such ideas. The Teichmüller spaces we obtain consequently have dif-
ferent names, and in this paper, we shall deal with the so-called “length-spectrum
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Teichmüller space”, “quasiconformal Teichmüller space” and “Fenchel-Nielsen Te-
ichmüller space”. Furthermore, even in the cases where these Teichmüller spaces
coincide setwise, the topologies on these spaces induced by the various metrics may
not be the same.

For the purpose of stating the results, let us briefly review the definitions.
We shall often use the same letter for a hyperbolic structure on a surface and

for the homotopy class of this structure.
The length-spectrum Teichmüller space, Tls(H0), with basepoint a (homotopy

class of) hyperbolic structure H0 on S, is the space of homotopy classes of hyper-
bolic structures H on S such that the ratios of lengths of simple closed geodesics
measured in the metrics H0 and H are uniformly bounded (see more precisely Def-
inition 2.1 below). This space is equipped with a natural distance dls called the
length-spectrum distance, obtained by taking the logarithm of the supremum of ra-
tios of geodesic lengths between (homotopy classes of) hyperbolic structures; see
formula (2.2) below.

The quasiconformal Teichmüller space, Tqc(H0), with basepoint a (homotopy
class of) conformal structure H0 on S, is the space of homotopy classes of conformal
structures H on S such that there exists a quasiconformal mapping homotopic to
the identity between the structures H0 and H (see more precisely Definition 2.2
below). We denote this space by Tqc(H0). This space is equipped with a natural
distance dqc, the quasiconformal or Teichmüller distance, given by the logarithm of
the dilatation of the best quasiconformal map homotopic to the identity between
the two structures; see formula (2.3) below.

A simple closed curve on S is said to be essential if it is not homotopic to a
point or to a puncture (but it can be homotopic to a boundary component). We
let S = S(S) be the set of isotopy classes of essential simple closed curves on S.
Given an element α of S and a (homotopy class of) hyperbolic structure H on S,
we denote by lH(α) the length of the unique closed H-geodesic in the class α.

By an abuse of notation, we shall often identify a hyperbolic structure (respec-
tively conformal structure) on S with the homotopy class of that metric (respec-
tively conformal structure) as an element of Teichmüller space.

A basic result that is used in comparing the two Teichmüller spaces (Tls, dls)
and (Tqc, dqc) is a theorem of Wolpert stating that if H and H ′ are two hyperbolic
structures on the surface S, then, for any K-quasiconformal map f : (S,H) →
(S,H ′) and for any element α in S(S), we have the following inequality:

(1.1)
1

K
≤ lH′(f(α))

lH(α)
≤ K.

For a proof, see [1]. We refer to this result as Wolpert’s inequality.
From this inequality, we obtain a natural inclusion map

(1.2) Tqc(H0) ↪→ Tls(H0).

In general, this inclusion map is not surjective (see [10] for an example), but it
is continuous (and Lipschitz), since Wolpert’s inequality also implies that for any
two elements H and H ′ in Tqc(S0), we have

(1.3) dls(H,H ′) ≤ dqc(H,H ′).

We shall also use Fenchel-Nielsen coordinates for hyperbolic structures. These
coordinates are defined relative to a pair of pants decomposition. The notion of
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hyperbolic pair of pants decomposition of our infinite type surface S has to be used
with some special care, one reason being that unlike the case of surfaces of finite
type, if we are given a topological pair of pants decomposition P = {Ci}i∈I of S
(where I is a countably infinite set) and a hyperbolic structure H0 on S, and if
we replace each simple closed curve Ci by the H0-geodesic in its homotopy class,
then some of the closed geodesics homotopic to the curves Ci might accumulate
on a geodesic of infinite length (homeomorphic to R), and then the union of the
closed geodesics might not be a geodesic pair of pants decomposition. Such a
phenomenon can be seen in examples given by Basmajian in his paper [3]. In the
paper [2], we gave a necessary and sufficient condition (which we called Nielsen-
convexity) under which given a hyperbolic structure on a surface of infinite type,
a topological pair of pants decomposition (or, equivalently, any topological pair of
pants decomposition) can be made geodesic. Consequently, when we talk about
Fenchel-Nielsen coordinates for a hyperbolic surface, we shall tacitly assume that
the underlying hyperbolic structure is Nielsen-convex.

In the paper [2], we also introduced the notion of a Fenchel-Nielsen Teichmüller
space, TFN (H0), based at a (homotopy class of) hyperbolic structure H0, with its
associated Fenchel-Nielsen metric dFN , relative to a fixed geodesic pair of pants
decomposition P of H0.

Given a pair of pants decomposition P = {Ci}i=∈I of the surface S, the following
condition on a hyperbolic structure H was formulated by Shiga in his paper [14]:

(1.4) ∃M > 0, ∀i ∈ I,
1

M
≤ lH(Ci) ≤ M.

We shall say that such a hyperbolic structure H satisfies Shiga’s condition with
respect to the pair of pants decomposition P = {Ci}, i ∈ I.

In [10] (Theorem 4.14), we proved that if the base hyperbolic metric H0 satisfies
Shiga’s Condition, then we have Tqc(H0) = Tls(H0) (set-theoretically).

We note that if the base topological surface is of finite type, then it is known
that the length-spectrum and the quasiconformal Teichmüller spaces coincide set-
wise and that the topologies defined on that set by the length-spectrum and the
quasiconformal metrics are the same. We can deduce this from the fact that the
Teichmüller space topology is induced from the embedding of that space in the
space R

S
+ of positive functions on S, equipped with the weak topology via the

length functions. That the topology induced by the length-spectrum metric coin-
cides with this topology follows from the fact that the geodesic length functions of
some finite number of elements of S are sufficient to parametrize Teichmüller space
and to define its topology; see [6]. See also [7] and [8], where these metrics are
discussed.

The case of surfaces of infinite type is different. The first negative result in this
direction is a result by Shiga, who proved in [14] (Theorem 1.1) that there exists a
hyperbolic structure H0 on a surface of infinite type and a sequence (Hn), n ≥ 1,
of hyperbolic structures in Tls(H0) which (when they are regarded as conformal
structures) are at the same time in Tqc(H0) and satisfy

dls(Hn, H0) → 0, while dqc(Hn, H0) → ∞.

This shows that the metrics dls and dqc do not induce the same topology on Tqc(H0).
In the same paper, Shiga showed that if the hyperbolic metric H0 satisfies prop-

erty (1.4), then dls and dqc induce the same topology on Tqc(S).
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Furthermore, Shiga showed that there exists a Riemann surface S0 of infinite
type such that the length spectrum distance dls restricted to the quasiconformal
Teichmüller space Tqc(S0) is not complete [14, Corollary 1.1]. We shall give below
(Example 5.1) another example of this phenomenon by a construction that is prob-
ably simpler than the one of Shiga. The hyperbolic structure in this example is
also different from the one given by Shiga, because in our example the surface (as
a metric space) is complete, whereas in Shiga’s example it is not.

We prove below (Proposition 3.2) that for some base hyperbolic structures H0,
we have Tls(H0) 	⊂ TFN (H0). We also give an example of a hyperbolic struc-
ture H0 and a sequence of points xn, n = 1, . . . , in Tls(H0) ∩ TFN (H0) such that
limn→∞ dls(xn, H0) = 0, while limn→∞ dFN (xn, H0) = ∞ (Proposition 3.3).

The length spectrum metric on any Teichmüller space of a conformally finite
type Riemann surface is complete (see [10, Theorem 2.25]). The proof given in [10]
does not extend to the case of Teichmüller spaces of surfaces of infinite topological
type. We prove this result for surfaces of infinite topological type in §4 below. More
precisely, we prove that for any base hyperbolic metrics H0 on S, the metric space
(Tls(H0), dls) is complete (Theorem 4.5). This result answers a question raised in
[10] (Question 2.22).

2. The length spectrum

and the quasiconformal Teichmüller spaces

For the reader’s convenience, we briefly review a few basic facts about the length
spectrum and the quasiconformal Teichmüller spaces.

All the homotopies of a surface that we consider in this paper preserve the
punctures and preserve setwise the boundary components at all times.

Throughout this section, H0 is a fixed hyperbolic structure on the surface S,
called the base hyperbolic structure. Given a hyperbolic structure H on S and a
homeomorphism f : (S,H0) → (S,H), we define the length-spectrum constant of f
to be the quantity

(2.1) L(f) = sup
α∈S(H)

{
lH′(f(α))

lH(α)
,

lH(α)

lH′(f(α))

}
.

This quantity depends only on the homotopy class of f . We say that f is length-
spectrum bounded if L(f) < ∞.

In the setting of the length spectrum Teichmüller space, we consider the collec-
tion of hyperbolic structures H on S such that the identity map Id : (S,H0) →
(S,H) is length-spectrum bounded. Given two such hyperbolic structures H and
H ′, we write H ∼ H ′ if there exists an isometry (or, equivalently, a length spec-
trum preserving homeomorphism) from (S,H) to (S,H ′) which is homotopic to the
identity. The relation ∼ is an equivalence relation on the set of length-spectrum
bounded hyperbolic structures H with respect to the basepoint H0.

Definition 2.1. The length-spectrum Teichmüller space Tls(H0) is the space of
∼-equivalence classes of length-spectrum bounded hyperbolic structures. The base-
point of this Teichmüller space is the equivalence class H0.

We note that the fact that we do not ask our homotopies to preserve pointwise
the boundary of the surface corresponds to working with what is usually called the
reduced Teichmüller space as opposed to the non-reduced Teichmüller space. In
the latter case, the homotopies that define the equivalence relation are required to
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induce the identity map on each boundary component. The basic example of the
non-reduced theory is the theory of the Teichmüller space of the unit disc, which
is infinite-dimensional. Since all the Teichmüller spaces that we consider in this
paper are reduced, we shall use, for simplicity, the terminology Teichmüller space
instead of reduced Teichmüller space.

The topology of Tls(H0) is induced by the length-spectrum metric dls, defined by
taking the distance dls(H,H ′) between two points in Tls(H0) represented by two
marked hyperbolic surfaces (f,H) and (f ′H ′) to be

(2.2) dls(H,H ′) =
1

2
logL(f ′ ◦ f−1).

(It may be useful to recall here that the length-spectrum constant of a length-
spectrum bounded homeomorphism only depends on the homotopy class of such a
homeomorphism.)

The fact that the function dls satisfies the properties of a metric is straight-
forward, except perhaps for the axiom saying that if dls(H,H ′) = 0 for H,H ′ ∈
Tls(H0), then H = H ′; see [10].

A Riemann surface is a one-dimensional complex manifold. Riemann surface
structures are also called conformal structures.

Given a real numberK ≥ 1, a homeomorphism f : R → R′ between two Riemann
surfaces is said to be K-quasiconformal if f has locally integrable distributional
derivatives satisfying at each point the inequality

|fz| ≤
K − 1

K + 1
|fz|.

The quasiconformal dilatation, or, for short, the dilatation of f , is the infimum
of the real numbers K for which f is K-quasiconformal.

In the setting of the quasiconformal Teichmüller space with basepoint a confor-
mal structure R0 on S, we consider only conformal structures R on S such that the
identity map Id : (S,R0) → (S,R) is quasiconformal. Given two such conformal
structures R and R′, we write R ∼ R′ if there exists a conformal map from (S,R)
to (S′, R′) which is homotopic to the identity. The relation ∼ is an equivalence
relation on the set of conformal structures R on S with respect to the basepoint
R0.

Definition 2.2. Consider a conformal structure R0 on X. Its quasiconformal
Teichmüller space, Tqc(R0), is the set of ∼-equivalence classes of conformal struc-
tures on S.

The space Tqc(R0) is equipped with the quasiconformal metric, also called the
Teichmüller metric, of which we also recall the definition: Given two (equiva-
lence classes of) conformal structures R and R′ on S, their quasiconformal distance
dqc(R,R′) is defined as

(2.3) dqc(R,R′) =
1

2
log inf{K(f)},

where the infimum is taken over quasiconformal dilatations K(f) of homeomor-
phisms f : (S,R) → (S,R′) which are homotopic to the identity.

The equivalence class of the marked Riemann surface R0 is the basepoint of
Tqc(R0).
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We refer to Nag [11] for an exposition of the quasiconformal theory of infinite-
dimensional Teichmüller spaces. In particular, it is known that the quasiconformal
metric is complete.

Douady and Earle gave in [5] a proof of the fact that any quasiconformal
Teichmüller space Tqc(R0) is contractible (see [5, Theorem 3], where this result is
also attributed to Tukia). It is unknown whether the length spectrum Teichmüller
spaces are contractible.

3. The Fenchel-Nielsen Teichmüller spaces

We shall consider Fenchel-Nielsen coordinates for spaces of homotopy classes
of hyperbolic structures on S. We carried out in [2] a study of these parameters
in the setting of surfaces of infinite type. These parameters are associated to a
fixed geodesic pair of pants decomposition P = {Ci}i∈I on a hyperbolic surface.
The boundary components of the surface (if they exist) are all homeomorphic to
circles and are in P. Fenchel-Nielsen coordinates are defined in the same way as
the Fenchel-Nielsen parameters associated to geodesic pair of pants decompositions
in the case of surfaces of finite type, but some care has to be taken regarding the
existence of a geodesic pair of pants decomposition in the infinite type case. In the
paper [2] we gave a necessary and sufficient condition on a hyperbolic structure on a
surface of infinite type S so that a topological pair of pants decomposition of S can
be made geodesic (see [2, Theorem 4.5]). We called this condition Nielsen-convexity.

Given a hyperbolic structure H and a geodesic pair of pants decomposition
on S, to each homotopy class of closed geodesic Ci ∈ P we associate a length
parameter and a twist parameter. The length parameter is the familiar quantity
lH(Ci) ∈]0,∞[; that is, it is the length of the H-geodesic in the homotopy class
Ci. The twist parameter θH(Ci) is defined only if Ci is not the homotopy class of
a boundary component of S, and it measures the relative twist amount along the
geodesic in the class Ci between the two generalized pairs of pants that have this
geodesic in common (the two pairs of pants may be the same). The definition is the
same as the one that is done in the case of surfaces of finite type. A precise definition
of the twist parameters is contained in [15, Theorem 4.6.23]. The twist amount per
unit time along the (geodesic in the class) Ci is chosen to be proportional (and not
necessarily equal) to arclength along that curve, and we follow the convention, as
in [2], that a complete positive Dehn twist along the curve Ci changes the twist
parameter by addition of 2π. Thus, in some sense, the parameter θH(Ci) that we
are using is an “angle” parameter.

The Fenchel-Nielsen parameters of H make up the collection of pairs
((lH(Ci), θH(Ci)))i∈I , where it is understood that if Ci is homotopic to a bound-
ary component, then it has no associated twist parameter, and instead of a pair
(lH(Ci), θH(Ci)), we have a single parameter lH(Ci).

If two hyperbolic structures on S are equivalent, then their Fenchel-Nielsen pa-
rameters are the same.

Given two hyperbolic metrics H and H ′ on S, we define their Fenchel-Nielsen
distance with respect to P as

(3.1) dFN (H,H ′) = sup
i∈I

max

(∣∣∣∣log lH(Ci)

lH′(Ci)

∣∣∣∣ , |lH(Ci)θH(Ci)− lH′(Ci)θH′(Ci)|
)
,
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again with the convention that if Ci is the homotopy class of a boundary component
of S, then there is no twist parameter to be considered.

Given two hyperbolic structures H and H ′ on S, we say that they are Fenchel-
Nielsen bounded (relatively to P) if their Fenchel-Nielsen distance is finite. Fenchel-
Nielsen boundedness is an equivalence relation.

Let H0 be a homotopy class of a hyperbolic structure on S, which we shall
consider as a base element of Teichmüller space. We consider the collection of ho-
motopy classes of hyperbolic structures H which are Fenchel-Nielsen bounded from
H0 with respect to P. Given two such homotopy classes of hyperbolic structures H
and H ′, we write H ∼ H ′ if there exists an isometry from (S,H) to (S,H ′) which
is homotopic to the identity. The relation ∼ is an equivalence relation on the set of
Fenchel-Nielsen bounded homotopy classes of hyperbolic surfaces H based at H0.

Definition 3.1 (Fenchel-Nielsen Teichmüller space). The Fenchel-Nielsen Teich-
müller space with respect to P and with basepoint H0, denoted by TFN (H0), is the
space of ∼-equivalence classes of hyperbolic structures which are Fenchel-Nielsen
bounded relative to H0 and P.

The function dFN defined in (3.1) is clearly a distance function on TFN (H0).
The basepoint of this Teichmüller space is the homotopy class H0.

We shall call the distance dFN on TFN (H0) the Fenchel-Nielsen distance relative
to the pair of pants decomposition P. The map

TFN (H0) � H �→ (log(lH(Ci))− log(lH0
(Ci)), lH(Ci)θH(Ci))i∈I ∈ �∞

is an isometric bijection between TFN (H0) and the sequence space l∞. It follows
from general properties of l∞-norms that the Fenchel-Nielsen distance on TFN (H0)
is complete.

We prove in the next two propositions that we have in general Tls(H0) 	⊂
TFN (H0) and that the length-spectrum distance and the Fenchel-Nielsen distance
might behave quite differently.

Proposition 3.2. Let H0 be a hyperbolic structure on S and let TFN (H0) be the
Fenchel-Nielsen Teichmüller space corresponding to the pants decomposition P =
{Ci}. Suppose there is a subsequence Cin , n = 1, 2, . . . , of Ci in the interior of
S whose lengths tend to 0. Then there exists an element H in Tls(H0) with H 	∈
TFN (H0).

Proof. To simplify notation, we denote by Cn, n = 1, 2 . . . the subsequence Cin , n =
1, 2, . . . . We assume that the lengths satisfy lH0

(Cn) = εn with limn→∞ εn = 0.
Let

tn =
[log | log εn|]

εn
+ 1, n = 1, 2, . . . ,

where [r] denotes the integral part of the real number r.
For each n = 1, 2, . . . , let Hn be the hyperbolic metric obtained from H0 by

the tn-th power of the positive Dehn twist about αn. We take all the positive
Dehn twists to be supported on disjoint annuli, we let T be the infinite composition
τ1 ◦ τ2 ◦ . . . , and we set H = T (H0). For every n = 1, 2, . . . , we have, from the
definition of the Fenchel-Nielsen distance,

dFN (H0, H)) ≥ 2πlH0
(Cn)tn

≥ 2π log | log εn|.
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Since limn→∞ εn = 0, we obtain dFN (H0, H) = ∞.
The proof that dls(H0, H) < ∞ is given in [10, Proposition 4.7]. �

Proposition 3.3. Let H0 be a hyperbolic structure on S and TFN (H0) be the
Fenchel-Nielsen Teichmüller space corresponding to the pants decomposition P =
{Ci}. Suppose that there is a sequence of homotopy classes Cin , n = 1, 2, . . . in the
interior of S whose lengths tend to 0. Then there exists a sequence of elements
Hn, n = 1, 2, . . . , in Tls(H0) ∩ TFN (H0) such that limn→∞ dls(Hn, H0) = 0, while
limn→∞ dFN (Hn, H0) = ∞.

Proof. We use the notation of the proof of Proposition 3.2, and again we denote by
Cn, n = 1, 2 . . . , the subsequence Cin , n = 1, 2, . . . . We take the same definitions of
εn, of tn and of the multiple Dehn twists τn supported on disjoint annuli, and we
set Hn = τn(H0). Then for each n = 1, 2, . . . , we have

dFN (H0, Hn) ≥ 2π log | log εn|.
Since the above inequality is valid for any n ≥ 1 and since limn→∞ εn = 0, we have
limn→∞ dFN (H0, Hn) = ∞.

Next we show that

lim
n→∞

dls(H0, Hn) = lim
n→∞

log sup
α∈S(X)

{ lHn
(α)

lH0
(α)

,
lH0

(α)

lHn
(α)

}
= 0.

The proof is adapted from the proof of Propositions 2.13 and 4.7 of [10].
Let α be an arbitrary homotopy class of essential curves in S. For i ∈ I, if

i(α,Cn) = 0, then lHn
(α) = lH0

(α). Assume now that i(α,Cn) 	= 0. By the Collar
Lemma (see [4]), on any hyperbolic surface H any closed geodesic whose length ε
is sufficiently small has an embedded collar neighborhood of width | log ε|. Thus,
we can write, for all n ≥ 0,

lH0
(α) ≥ i(α, αn)| log εn|.

From the definition of a Dehn twist, we have

lHn
(α) ≤ lH0

(α) + i(α,Cn)lH0
(Cn)tn.

Thus, we obtain

lHn
(α)

lH0
(α)

≤ 1 +
i(α,Cn)εntn

lH0
(α)

≤ 1 +
log | log εn|
| log εn|

.

Note that limn→∞
lHn (α)
lH0

(α) ≤1. In the same way, we can prove that limn→∞
lHn (α)
lH0

(α)

≥ 1. This gives limn→∞ dls(H0, Hn) = 0. �

4. Completeness of the length spectrum metric

In this section, H0 is a hyperbolic structure on S, (Tls(H0), dls) is the length-
spectrum Teichmüller space based at this point, equipped with the length-spectrum
distance, and P = {Ci}i∈I is a hyperbolic pair of pants decomposition of H0. For
every hyperbolic structure H on S, we denote by (lH(Ci), θH(Ci))i∈I its Fenchel-
Nielsen coordinates with respect to P.
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Lemma 4.1. Let (xn) ⊂ Tls(H0) be a sequence converging to a point x in Tls(H0).
Then for all i ∈ I we have lxn

(Ci) → lx(Ci) and θxn
(Ci) → θx(Ci).

Proof. From the definition of the length-spectrum distance, for every simple closed
curve γ ⊂ S we have lxn

(γ) → lx(γ). In particular, lxn
(Ci) → lx(Ci). For every

curve Ci, we consider an essential simple closed curve βi which is not homotopic
to it, which intersects it in a minimal number of points (this number is 1 or 2)
and which is disjoint from Cj for any j 	= i. We let β′

i be the image of βi by the
Dehn twist along Ci. We also have lxn

(βi) → lx(βi). By the formulae in [13],
the absolute value of the twist parameter along Ci is a continuous function of the
length of the curves Ci, βi and of the other curves Cj at the boundaries of the
pair of pants containing Ci. Hence |θxn

(Ci)| → |θx(Ci)|. If θx(Ci) = 0 we are
done; otherwise note that by the same argument, using β′

i instead of βi, we have
|θxn

(Ci)+ 2π| → |θx(Ci)+ 2π|. Hence for n large enough, θxn
(Ci) and θx(Ci) have

the same sign. �

One may ask whether the converse of this lemma is true: i.e. if (xn) ⊂ Tls(H0)
is some sequence and if x ∈ Tls(H0) is such that lxn

(Ci) → lx(Ci) and θxn
(Ci) →

θx(Ci), then is it true that (xn) → x in the length-spectrum metric?
We prove a result of this kind under an additional hypothesis on (xn); see

Lemma 4.4.

Lemma 4.2. Let (xn) ⊂ Tls(H0) be a Cauchy sequence. Then there are numbers
li ∈ R>0 and θi ∈ R such that for all i ∈ I we have lxn

(Ci) → li and θxn
(Ci) → θi

as n → ∞.

Proof. By the definition of the length-spectrum distance, for every simple closed
curve γ on S, the sequence log(lxn

(γ)) is a Cauchy sequence of real numbers. In
particular, there exists a positive real number lγ such that lxn

(γ) → lγ as n → ∞.
Taking γ = Ci, we obtain lxn

(Ci) → lCi
= li as n → ∞. Consider the curves βi, β

′
i

as in Lemma 4.1. By using the formulae of [13] as in Lemma 4.1, we can see that
|θxn

(Ci)| converges to a non-negative real number. If this number is zero, we put
θi = 0; otherwise we choose θi such that |θi| is that number. To choose the sign of
θi we use the limit of the sequence |θxn

(Ci) + 2π|, the sign of θi being positive if
this limit is greater that li; otherwise this sign is negative. With these choices we
have θxn

(Ci) → θi. �

Lemma 4.3. Let (xn) ⊂ Tls(H0) be a sequence, and let x ∈ Tls(H0) be such that
lxn

(Ci) → lx(Ci) and θxn
(Ci) → θx(Ci). Then for every element γ in S, we have

lxn
(γ) → lx(γ).

Proof. The closed curve γ is compact; hence it is contained in a subsurface S′ of S
that is the union of finitely many pairs of pants of the decomposition P. Choose
representatives in the equivalence classes of the structures xn and x such that the
boundary curves of S′ are geodesics. Consider the restrictions x′

n and x′ of our
hyperbolic structures to S′. On this finite type subsurface the Fenchel-Nielsen
coordinates are finite-dimensional; hence the surfaces x′

n and x′ are upper bounded
in the sense of [2]. That is, the length coordinates of x and x′ (with respect to a given
pair of pants decomposition) are uniformly bounded from above. (This condition,
used in [2] for surfaces of infinite type, is automatically satisfied for surfaces of finite
type.) Since dFN (x′

n, x
′) → 0, we obtain, from [2, Theorem 8.5], dqc(x

′
n, x

′) → 0,
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which, by Wolpert’s Inequality, implies dls(x
′
n, x

′) → 0. In particular, lxn
(γ) →

lx(γ). �

Lemma 4.4. Let (xn) ⊂ (Tls(H0), dls) be a Cauchy sequence, and let x ∈ Tls(H0)
be such that lxn

(Ci) → lx(Ci) and θxn
(Ci) → θx(Ci). Then dls(xn, x) → 0.

Proof. By hypothesis, (xn) is a Cauchy sequence; that is,

∀ε > 0, ∃N : ∀n,m > N, dls(xn, xm) < ε.

Take an element γ of S. From the above property, we have, ∀n,m > N,∣∣∣∣log lxn
(γ)

lxm
(γ)

∣∣∣∣ < ε.

By Lemma 4.3 we have lxm
(γ) → lx(γ); hence ∀n > N,∣∣∣∣log lxn

(γ)

lx(γ)

∣∣∣∣ ≤ ε.

Taking the supremum over all γ in S, we have

∀ε > 0, ∃N : ∀n > N, dls(xn, x) ≤ ε;

that is, xn → x. �

Theorem 4.5. For any hyperbolic metric H0 on S, the metric space (Tls(H0), dls)
is complete.

Proof. This is a direct corollary of Lemmas 4.2 and 4.4. Take a Cauchy sequence
(xn) in Tls(X). By Lemma 4.2, we can find the limits of length and twist parameters
(li, θi) of Ci. Use these numbers to construct a marked hyperbolic surface with
Fenchel-Nielsen coordinates (li, θi). By Lemma 4.4, the sequence xn converges to
this marked hyperbolic surface. Hence every Cauchy sequence has a limit. �

Remarks 4.6. 1) Theorem 4.5 answers Question 2.22 of [10], which asks for a nec-
essary and sufficient condition for a hyperbolic structure H0 on a surface of infinite
topological type under which the length-spectrum Teichmüller space (Tls(H0), dls)
is complete.

2) The proof of Theorem 4.5 also works for surfaces of finite type. For such
surfaces, the result was already known; see [10, Theorem 2.25].

Question 4.7. For every hyperbolic structure H0 on an infinite type surface, we
have the inclusion Tqc(H0) ⊂ Tls(H0), and we proved that this is not always an
equality. Is it true that Tqc(H0) is dense in Tls(H0)? If this were true, (Tls(H0), dls)
would be the metric completion of (Tqc(H0), dls).

5. More examples

In this section, we give examples of hyperbolic structures H0 such that the
restriction of the length-spectrum metric dls to the Teichmüller space Tqs(H) is
not complete. Of course, the hyperbolic structures do not satisfy Shiga’s condition
(1.4).

The first example is an adaptation of an example that was given in [9].
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Example 5.1. Let H0 be a hyperbolic surface with a pair of pants decomposition
P = {Ci | i ∈ I} such that for some subsequence Cik contained in the interior of

H0, lH0
(Cik) = εk = e−k2

. For each k = 1, 2, . . ., let Hk be the hyperbolic surface

obtained by a positive multi-Dehn twist of H0 along Cik of order tk = [ log | log εk|
εk

].

Note that limk→∞ tk = ∞ but limk→∞
lH0

(Cik
)tk

log εk
= limk→∞

log | log εk|
log εk

= 0. We

show that
dls(Hk, H0) → 0, while dqc(Hk, H0) → ∞.

Let us first show that dls(Hk, H0) → 0. Recall that the length spectrum metric
is defined by

dls(Hk, H0) = max{log sup
γ

lHk
(γ)

lH0
(γ)

, log sup
γ

lH0
(γ)

lHk
(γ)

},

where the supremum is taken over all essential simple closed curves γ on S.
If for some k a simple closed curve γ does not intersect Cik , then the hyperbolic

length of γ is invariant under the twist along Cik . If γ intersects Cik , we have

lHk
(γ)− i(γ, Cik)lH0

(Cik)tk ≤ lH0
(γ) ≤ lHk

(γ) + i(γ, Cik)lH0
(Cik)tk.

As a result,

dls(Hk, H0) = max{log sup
i(γ,Cik

) �=0

lHk
(γ)

lH0
(γ)

, log sup
i(γ,Cik

) �=0

lH0
(γ)

lHk
(γ)

}.

We have

log
lHk

(γ)

lH0
(γ)

≤ log
lH0

(γ) + i(γ, Cik)lH0
(Cik)tk

lH0
(γ)

= log(1 +
i(γ, Cik)lH0

(Cik)tk
lH0

(γ)
)

≤ i(γ, Cik)lH0
(Cik)tk

lH0
(γ)

,

and similarly,

log
lH0

(γ)

lHk
(γ)

≤ log
lH0

(γ)

lH0
(γ)− i(γ, Cik)lH0

(Cik)tk
≤ i(γ, Cik)lH0

(Cik)tk
lH0

(γ)
.

Thus, we have

(5.1) dls(Hk, H0) ≤ sup
i(γ,Cik

) �=0

i(γ, Cik)lH0
(Cik)tk

lH0
(γ)

.

We assume that every εk is less than some fixed constant M > 0. Then there is
a constant C depending on M such that lH0

(γ) is larger than Ci(γ, Cik)| log εk|, as
follows from the Collar Lemma [4]. This lemma says that, for each simple closed
geodesic with length � less than M , there is a collar neighborhood of width larger
than w, where w is given by

sinhw = 1/ sinh(�/2).

A simple computation shows that there is a constant C depending on M such that
w is larger than C| log �|. Since any simple closed curve γ which intersects Cik

should cross the collar neighborhood i(γ, Cik) times, its hyperbolic length should
be larger than Ci(γ, Cik)| log εk|. As a result, the right hand side of inequality (5.1)
tends to 0 as k → ∞. Thus we have dls(Hk, H0) → 0.
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Example 5.2. Let H0 be a hyperbolic surface with a hyperbolic pants decompo-
sition P = {Ci} such that some subsequence of Cik contained in the interior of H0

satisfies the following:
(i) lH0

(Cik) = ak → ∞.
(ii) For any geodesic arc α connecting two points (not necessary distinct) on Cik ,

but α 	⊂ Cik , α satisfies lH0
(α) > kak.

Let Hk be the hyperbolic surface obtained by a positive Dehn twist of H0 along
Cik . Then for any simple closed curve γ such that i(Cik , γ) 	= 0, lH0

(γ) is larger than
ki(γ, Cik)ak and lH0

(γ) − i(γ, Cik)ak ≤ lHk
(γ) ≤ lH0

(γ) − i(γ, Cik)ak. The argu-
ments in Example 5.1 show that in the Teichmüller space T (H0)qc, dls(Hk, H0) → 0
while dqc(Hk, H0) → ∞.

Remark 5.3. Concrete examples satisfying conditions (i) and (ii) in Example 5.2 are
constructed by Shiga [14] and Matsuzaki [12]. Both examples satisfy the condition
that given any constant L, there are finitely many simple closed geodesics on H0

with hyperbolic length bounded above by L. Therefore these hyperbolic structures
are different from those of Example 5.1. In the example of Shiga [14], the Riemann
surface induced by H0 is not complete. Matsuzaki [12] refined Shiga’s construction
to give a complete Riemann surface H0 and then showed that for such an H0, the
Teichmüller modular group Mod(H0) has only a countable number of elements.

Remark 5.4. The two above examples show that there exist hyperbolic surfaces H0

of infinite topological type which do not satisfy Shiga’s condition, such that dqc and
dls are not topologically equivalent on Tqc(H0).

We conclude this paper with a new proof of a theorem due to Shiga [14].

Theorem 5.5. There exist surfaces S of infinite topological type and hyperbolic
structures on such surfaces such that the length-spectrum metric is not complete on
(Tqc(H0), dls).

Proof. We use the hyperbolic structures given in Examples 5.1 and 5.2. We shall
prove that the structures in Example 5.1 satisfy the required property. The proof
for the structures given in Example 5.2 is similar.

We consider the surface of Example 5.1, and we construct a Cauchy sequence in
(T (H0), dls) that does not have a limit.

Recall that H0 is a hyperbolic surface with a pants decomposition P = {Ci}
such that for some subsequence of Cik contained in the interior of H0, lH0

(Cik) =

εk = e−k2

. We set tk = [ log | log εk|
εk

]. Let H1 be the hyperbolic surface obtained
from H0 by the positive multiple Dehn twist of order t1 along Ci1 . More gener-
ally, for all k ≥ 1, let Hk be the hyperbolic surface obtained from Hk−1 by the
positive multiple Dehn twist of order tk along Cik . Then as in the proof of Exam-
ple 5.1, we can show that dls(Hm, Hn) → 0 as m,n → ∞. As a result, (Hk) is a
Cauchy sequence in (T (H0), dls). We prove that (Hk) has no limit in (Tqc(H0), dls),
by contradiction. Suppose there is a hyperbolic surface H ∈ Tqc(H0) such that
dls(Hk, H) → 0. Consider the Fenchel-Nielsen coordinates determined by H0 and
P. From the construction of the sequence (Hk), the Fenchel-Nielsen coordinates of
H are {(lH(Ci), θH(Ci))}, where lH(Ci) = lH0

(Ci), with θH(Cik)−θH0
(Cik) = 2πtk

and θH(Cj) − θH0
(Cj) = 0 when j 	= ik. We claim that dqc(H0, H) = ∞. As a

result, H does not belong to Tqc(H0), which contradicts the assumption.
The fact that dqc(H0, H) = ∞ follows from Theorem 5.6 below, which says

that if dqc(H0, H) is finite, then Tk is uniformly bounded. We recall that Tk is
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a hyperbolic distance measured on the curve Ck, and therefore, in terms of the
number of twists tk, we have Tk = tk × lH0

(Ck); that is, Tk = [log | log εk|]. Thus, if
dqc(H0, H) is finite, then Tk is uniformly bounded, which contradicts the fact that
[log | log εk|] → ∞ as k → ∞. �

The following result was used in the above proof. The statement is from [2,
Theorem 7.6], adapted to our situation.

Theorem 5.6. Let H0 be a hyperbolic surface with a hyperbolic pair of pants de-
composition P = {Ci}, and assume that there exists a positive constant L0 such
that lH0

(Ck) ≤ L for all k = 1, 2, . . . . Let Cik , k = 1, 2, . . . , be a subsequence of
(Ci), and let T = (Tk), k = 1, 2, . . . , be a sequence of positive real numbers. Let
Ht be the hyperbolic metric obtained by a Fenchel-Nielsen twist along each geodesic
curve Cik , of distance Ti measured on Cik , for each k. Then if dqc(H0, Ht) < M ,
we have

sup
k

|Tk| ≤ Cdqc(H,Ht),

where C is a positive constant depending on L and M .

Remark 5.7. Shiga’s examples of hyperbolic structures are not complete (as metric
spaces), whereas in our examples they are complete. To see this, note that since
the geodesic length of each curve in the pairs of pants decomposition that we use
is bounded uniformly from above, it follows that any closed ball of radius 1 on the
surface is contained in a finite number of pairs of pants of the given decomposition,
and therefore it is compact. Thus, by the theorem of Hopf-Rinow, the metric is
complete (see [2, Lemma 4.7]).
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